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Abstract�Bringing technology from the research world 
into an operational environment poses many challenges.  
Typically, software systems having their origins in low 
Technical Readiness Level research projects have few, if 
any, formal requirements associated with them.  This 
paucity of formal requirements coupled with the 
challenges associated with coordinating multiple, 
distributed research-oriented software projects makes it 
difficult to design and build software systems that will 
ultimately be useful in an operational environment. 
 
Targeted for current and next-generation space vehicles, 
the diagnostic applications that compose the Advanced 
Diagnostic System (ADS) under development in our lab 
at NASA-Ames Research Center are realizations of 
research projects associated with multiple organizations 
and generally are not designed according to stringent 
requirements nor with integration into the ADS 
environment in mind.  The core functionality of a 
Diagnostic Client Application, usually having its basis in 
artificial intelligence research, is the primary (and 
perhaps sole) consideration of the application developer.  
Research funds generally are not available for 
implementing aspects such as logging and security, both 
of which are critical in aerospace diagnostic systems such 
as the ADS.  In order to leverage funding sources and 
integrate these separate research projects into a coherent 
whole suitable for deployment in an operational 
environment, it is important for the systems integrator to 
be able to easily (affordably) weave these aspects into the 
software system.  Furthermore, Diagnostic Client 

Applications produce knowledge products, such as 
subsystem state estimates, that other applications within 
the ADS universe can use to augment their awareness of 
the larger system with the goal of generally increasing 
the effectiveness of the ADS.   Taking a holistic approach 
to knowledge sharing in a software system developed by 
multiple, loosely-coupled research projects poses a 
challenge to the systems integrator that goes beyond 
fundamental inter-process communication issues.  
However, the challenge can be met and the goal of a 
more effective ADS can be achieved through the use of 
emerging data representation technologies. 
 
Aspect-Oriented Programming (AOP) is a new software 
development methodology that complements Object-
Oriented Programming and addresses the complexity of 
software systems by achieving a separation of functional 
and interaction components (aspects).  Aspects such as 
logging and security are defined as properties that cut 
across groups of functional components (diagnostic 
applications).  Aspects can be thought about and 
analyzed separately from each other and from the core 
functionality of the software system.  AOP provides the 
modular separation of crosscutting concerns, where the 
aspect code is scattered/tangled throughout the software 
system.  An AOP Framework takes advantage of what 
AOP provides and enables us to build software systems 
that can be extended and adapted during runtime. 
 
In this paper we present an AOP Framework for 
integrating software components into an Advanced 
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(artificial intelligence-based) Diagnostic System and 
introduce a basic ontology for sharing knowledge 
between a community of diagnostic applications (agents). 
 The ontology and AOP Framework can be applied to the 
development of diagnostic and prognostic decision 
support systems for current as well as next-generation 
space vehicles such as the International Space Station 
and Orbital Space Plane. 
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 1. INTRODUCTION 
Software development and maintenance is a major cost 
center of current projects in the NASA International 
Space Station (ISS) Program, yet the final requirements 
for software are never complete before the majority of the 
software has been written.  This situation is the result of 
a number of driving forces and is likely to become even 
more acute in next generation systems.  The nature of 
NASA projects drives us into new realms of design and 
therefore unforeseeable problems, which result in 
changes to software.  In addition to requirements that 
change as a result of technological unknowns, the 
evolution of security policies and application 
traceability/transparency requirements impact the 
software development process.  These changes to 
requirements, as well as typical defect corrections, drive 
costs both during the design/build/test phase and in the 
sustaining engineering phase.  
 
To address the issues of vague and/or changing 
requirements in a complex software development project 
such as the Advanced Diagnostic System (ADS), we use 
Aspect-Oriented Programming (AOP) [1, 2, 3, 4, 5, 6, 7] 
methodology to separate a program�s functional 
components from the interaction components (aspects). 
Aspects are defined as properties that cut across groups 
of functional components.  While these aspects can be 
thought about and analyzed relatively separately from the 
basic functionality, at the implementation level they must 
be combined together.  Programming them manually into 
the system�s functionality using current component-
oriented languages results in aspects being spread 

throughout the code.  This code tangling makes the 
source code difficult to develop, understand and evolve 
because it destroys modularity and reduces software 
quality [6].  In this paper we show how to deploy aspect-
oriented technology, which provides an architectural 
support for the design and development of intelligent 
concurrent systems.  We show how the aspect code can 
be isolated from the functional components that 
otherwise would be intermingled with the code of the 
functional components.  Isolating the functional 
components from the non-functional components, the 
aspect code, has many attractive benefits: first and 
foremost it promotes reusability for the functional classes 
and the aspect classes.  It also simplifies the design of 
complex systems, since the interaction code is separated 
from the functional code.  Using the ADS under 
development at NASA-Ames Research Center as an 
example of an intelligent systems software development 
project, we will show how using an Aspect-Oriented 
Framework can facilitate building reconfigurable 
intelligent systems, lower software development and 
maintenance costs and improve overall software quality. 
 
In addition to the apparent advantages of 
reconfigurability and isolation of core functionality from 
other utility-type aspects, intelligent systems naturally 
benefit from the sharing of knowledge throughout the 
system, and an agent�s usefulness to the community can 
be enhanced through its understanding of the 
environment in which is exists.  There are several 
mechanisms through which knowledge sharing and reuse 
can be accomplished including simple lookup tables and 
distributed object technologies such as XML-RPC and 
CORBA.  However, recent work on Semantic Web3 
technologies has produced a rich set of tools and concepts 
specifically designed for the representation of data in 
web-based distributed systems such as the ADS. The 
OWL Web Ontology Language4 (a W3C Candidate 
Recommendation) has been developed specifically to 
describe and represent a body of knowledge in a 
computer-usable format. While this is still nascent 
technology, the  potential benefits of using an ontology 
based on emerging standards exceeds the potential risks. 
 
In section 2 we provide an overview of the Dynamic 
Weaver Framework architecture in sufficient detail to 
give the reader a basic understanding of its usage.  A 
more in-depth treatment can be found in the DWF 
documentation that will be made available for download 
in early 2004 along with the entire DWF 
implementation.  Section 3 provides an overview of the 
ADS architecture and presents three Diagnostic Client 
Applications, still in early stages of development, that are 

                                                        
3 W3C Semantic Web 
4 Frequently Asked Questions on W3C's Web Ontology Language (OWL) 
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prime candidates for integration into the ISS ADS using 
the DWF.  In section 4 we discuss the problem of 
information sharing in the ADS and present a basic 
ontology for knowledge sharing and reuse based on the 
OWL Web Ontology Language.  We conclude by 
discussing the benefits derived from using the DWF and 
ADS ontology as tools for moving research-oriented 
software projects toward operational deployment.  
 

 2. THE DYNAMIC WEAVER FRAMEWORK 
The Dynamic Weaver Framework (DWF) is an aspect 
oriented language independent framework.  It achieves 
the separation of concerns by separating the properties of 
the system such as logging, security, scheduling, etc., 
from the functionality of the system then it weaves them 
together at run time to achieve the overall application 
system.  The DWF employs Java reflection to use the 
dynamic proxy[4] in order to achieve dynamic 
adaptability at run time.  In this framework, aspects can 
be added and removed from the system during run time 
without the need to take the system down to recompile 
the code.  The framework has the ability to attach/detach 
any aspect to/from the running system, establish 
communication between any two modules in the system, 
or redirect communication from one component to the 
other. 
 
The DWF enables applications to adapt to environmental 
changes at run time, because components and aspects are 
independent of each other and they are woven into the 
system at run time.  The components and the aspects in 
the DWF must have a predefined interface, but the users 
are free to change the class implementation at run time.  
The DWF provides us with the capability of adding and 
removing aspects as well as �point cuts� during runtime. 
 This capability will enable us to support 
reconfigurability and dynamically adapt to changes in the 
deployment environment with minimal impact on the 
running system.  
 
The Dynamic Weaver Framework has the following 
advantages:  
 
1. We achieve a high level of abstraction since the 
designer makes the programmer�s job easier by reasoning 
about individual concerns in isolation from each other.  
  
2. Concern reuse. Separation of crosscutting concerns 
provides the software with a loose coupling between the 
different concerns, achieving the usability of a single 
concern. 
 
3. No restrictions are imposed by the software application 
specification. In aspect-oriented software development, 

software applications must define when they are going to 
be adapted at run time by specifying the �join points�.  In 
the DWF, the software application is adaptable at run 
time an its structure can be inspected and dynamically 
customized, obviating the need to specify what might be 
adapted and at what time. 
 
4. The DWF is a language independent framework. The 
system or the software application may be programmed 
using any language. 
   
5. Application concerns are defined at design level and 
not at the language or the programming language level, 
which provides a loose coupling between the design and 
the implementation, making an aspect more reusable. 
 
6. The DWF achieves a full separation between the 
functional code and the reusable aspects, which avoids 
the tangling of application source code, achieving ease of 
maintenance and adaptation of applications to a new 
aspect. 
 
In general, the aspect-oriented paradigm has the 
following elements: 
 
• Aspect:  The modular representation for a cross-

cutting concern.  A concern may cross-cut one or 
more components; security and logging are examples 
of cross-cutting concerns. 

• Core functional component: A set of software 
modules that together contribute to the basic identity 
of the larger system. 

• Weaver:  The engine that weaves aspects along with 
their respective core functional components. 

• Join point: Determines the granularity of the 
weaving process.  In the DWF it is at the method call 
level. 

• Point cut: An aspect may have different 
implementations for different methods; a point-cut 
represents the specific aspect implementation that 
will be associated with a specific method(s) of the 
core functional components.  For example, different 
security policies may be applied to different methods 
defined in the same component. 

• Advice:  The actual code that will be executed when 
the control flow reaches the join-points. 

 

Dynamic Weaver Framework Architecture 

In this section we provide an overview of the main DWF 
components.  A complete description of the DWF 
components can be found in the DWF documentation5. 
 

                                                        
5 The DWF and documentation will be available for download in early 
2004. 
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Aspect Weaver�The AspectWeaver class takes 
advantage of the dynamic proxy [4] capability in Java 
1.3. The framework structure is depicted in the class 
diagram in Figure 1. Each class uses a dynamic proxy 
class, which represents the aspect weaver class.  A 
software system has a number of aspects, and each aspect 
has a number of point cuts.  Each point cut has an advice 
class containing the two methods beforeAdvice() and 
afterAdvice() that will be executed when control reaches 
the join points.  The semantics of aspect, point cut, and 
advice are similar to the ones cited in AspectJ6. 
 
The AspectWeaver weaves classes and their perspective 
aspects at runtime. The AspectWeaver intercepts 
messages coming to the component and redirects them to 
the AspectRepository. The AspectRepository stores 
information about the aspect(s) (e.g. scheduling, 
synchronization, security�) and the order in which they 
have to be executed. The DWF has a loose coupling 
between the component and the aspects, because the 
component and the aspects do not have direct references 
between them. 
 
The AspectWeaver interacts with the clients and does the 
actual weaving of aspects while the application is 
running. All communication between the functional 
components and the aspects of the system is 
accomplished through the AspectWeaver class. 
 
As mentioned above the AspectWeaver is a dynamic 
proxy, which directly interacts with the clients and does 
the actual weaving of aspects while the application is 
running.  Whenever a client calls an aspect method, the 
AspectWeaver executes the invoke method in the 
AspectWeaver class.  The invoke method in turn executes 
the AspectRepository�s beforeAdvice() method.  If the 
call is successful, the actual operation will be executed.  
When the task is finished, the AspectWeaver will invoke 
the afterAdvice() method in the AspectRespository. 
 
In summary, the AspectWeaver class plays two roles in 
the DWF.  First, it intercepts every method called by the 
system and redirects communication to the 
AspectRepository by invoking the beforeAdvice() method 
of the AspectRespository.  Second, The AspectWeaver 
class is responsible for weaving aspects into core 
functional components at run time. 
 
Aspect Repository�As mentioned in the AspectWeaver 
class, every method call to the component is intercepted 
by the AspectWeaver.  The AspectWeaver then delegates 
responsibility to the AspectRepository to evaluate a set of 
conditions by invoking its beforeAdvice() method.  The 
AspectRepository then evaluates all required aspects of 

                                                        
6 Eclipse Projects-AspectJ 

the calling method. Upon successful return of the 
beforeAdvice() method, a value of RESUME will be 
returned to the AspectWeaver in which the 
AspectWeaver then invokes the method on the core 
functional component itself.  Upon the completion of the 
execution of the method the AspectWeaver will invoke 
the afterAdvice() method in the AspectRespository.  
 

Aspect Table�The AspectTable is implemented using a 
hash and resides in the AspectRespository class.  It 
contains all aspects that have been registered in the 
framework and is used only in the AspectRepository.  
Initially the AspectTable is empty and is subsequently 
loaded with an aspect by calling the addAspect() method 
in the AspectRespository. 
 
The addAspect() method will insert any aspect name that 
you provide to the system into the AspectTable along 
with an index and an object that contains the actual 
aspect.  Similarly, removing an aspect from the 
AspectTable can be done by calling the removeAspect() 
method in the AspectRepository class. 
 
Aspects�An AspectTable can contain multiple Aspect 
objects and each Aspect can contain multiple Pointcuts. 
We represent an aspect object as a hash table that exists 
in the AspectTable.  Every time an aspect is added to the 
AspectTable a new hash table is instantiated and inserted 
into a new row in the AspectTable inside the 
AspectRepository.  Each aspect can contain multiple 
Pointcuts and every Pointcut may contain one or more 
join points.  
 
Point cuts�An Aspect can contain multiple Pointcut 
objects and each Pointcut can contain multiple Advices. 
The method addAdvice() is used for adding a new advice. 
The removeAdvice() method removes an advice from a 
given Pointcut. The beforeAdvice() and afterAdvice() 
methods are invoked by the corresponding Aspect�s 
methods of the same name. 
 
Advices�The actual behavior of each aspect is provided 
by an object whose interface is defined by AdviceIF.  
They will be woven during runtime by the dynamic 
proxy, i.e., AspectWeaver.  The beforeAdvice() method 
returns one of the integer constants defined in the 
AspectRepository; RESUME, BLOCK, and ABORT. 
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Figure 1: Dynamic Weaver Framework class diagram 
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3. ADS COMPONENT INTEGRATION USING 
THE DYNAMIC WEAVER FRAMEWORK 

 
The Advanced Diagnostic System (ADS) under 
development in the Intelligent Mobile Technologies 
(IMT) Lab at NASA-Ames Research Center [13] is an 
intelligent decision support system for current and next-
generation space vehicles such the International Space 
Station (ISS) and Orbital Space Plane (OSP).  In the 
following sections we show how ADS development can 
benefit from using the Dynamic Weaver Framework for 
integrating components into the ADS ecosystem. 
 
The Diagnostic Client Applications (DCAs) that 
compose the ADS are realizations of research projects 
associated with multiple organizations and generally are 
not designed according to stringent requirements nor 
with integration into the ADS in mind.  The core 
functionality of a DCA, usually having its basis in 
artificial intelligence research, is the primary (and 
perhaps sole) consideration of the DCA developer. 
Research funds generally are not available for  
implementing aspects such as logging, debugging or 
security, all of which are critical in a flight-qualified 
system such as the ADS.  Furthermore, the logging and 
security requirements are not well understood at design 
time and are likely to evolve throughout the development 
and maintenance phases. It is therefore important for the 
systems integrator to be able to easily (affordably) weave 
these aspects into the system, even after the system has 
been deployed on-orbit. 
 
Advanced Diagnostic System Overview 

The ISS ADS architecture is summarized in the 
following figure: 

 
Figure 2: ISS Advanced Diagnostic System Architecture 

 

The Advanced Diagnostic System is composed of a 
number of Diagnostic Client Applications (DCAs) that 
reside both on board and on the ground.  The DCAs 
obtain pre-processed avionics data from the on-board 
Diagnostic Data Server (DDS) using a publish/subscribe 
architecture.   Diagnostic clients are generally artificial 
intelligence-based applications such as artificial neural 
networks, Bayesian belief networks, fuzzy cognitive maps 
and model-based reasoners that integrate data across sub-
systems. The collaborative product of the DCAs is the 
Advanced Diagnostic System, a decision support tool 
targeted for use by crew, flight controllers and back-room 
engineering groups on the ground. 
 
The DDS inputs are provided by Data Collection Engines 
(DCEs) that interact directly with trusted, lower-level 
avionics components such as MIL-STD 1553 data buses 
and  the Command and Control 
Multiplexer/Demultiplexer (MDM) Current Value Table, 
a shared memory construct of the ISS Command and 
Control Software.  Core DDS functions create derived 
data products, such as Caution and Warning messages, 
and make them available to DCAs through a 
publish/subscribe architecture.  A DCA can share data 
products with its peers using the DDS publish/subscribe 
mechanism. 
 
The MIL-STD 1553 protocol used for the data bus on the 
ISS is a synchronous, deterministic protocol that uses 
three data rates to transport parameters throughout the 
C&C system: 10 Hz, 1 Hz and 0.1 Hz.  The DCEs that 
interact with the MIL-STD 1553 buses must process the 
raw data within the boundaries of these three data rates 
and are therefore hard real-time tasks. The pre-
processing functions associated with the DDS can buffer 
data coming from the DCEs and are categorized as soft 
real-time tasks. 
 

Advanced Caution and Warning Diagnostic Client 
Application Overview 
 
In this section, we focus on a the Advanced Caution and 
Warning (ACW) Diagnostic Client Application (DCA), 
composed of an alarm filtering function, implemented as 
an Artificial Neural Network (ANN) and an alarm 
correlation function, implemented as a Bayesian Network 
(BN)7.  
 
Fault detection and isolation (FDI) is a function of the 
Advanced Diagnostic System that uses messages (alarms) 
created by the Caution and Warning software of the 
complex system under management (diagnosis).  These 
caution and warning messages are published to a 
subscriber DCA (the Advanced Caution and Warning  
                                                        
7 Also called a belief network or causal network. 



 7

filtering function) by the Diagnostic Data Server.  In a 
complex system such as the International Space Station 
or Orbital Space Plane, a component or subsystem fault 
event can generate tens, hundreds or even thousands of 
alarms (an �alarm storm�), some significant percentage of 
which may not be related to the root cause of the fault 
event.  Operations personnel, either through training or 
experience, can visually filter some portion of the 
unrelated alarms (noise) in order to reduce the sample 
space of probable root causes (isolation).  Time is usually 
critical during FDI activities and the Advanced Caution 
and Warning filtering function reduces the noise in the 
alarm stream, aiming to reduce the time required for 
FDI. Once the noise has been filtered from the alarm set, 
alarm correlation can be performed either by a human or 
automated process. When an automated process such as a 
Bayesian Network is used for alarm correlation, the 
ACW filtering function acts as a preprocessor to reduce 
the size of the input vector, thereby speeding up 
convergence.    
 
A supervised learning technique is used to train the ANN 
alarm filter to recognize and filter extraneous alarms 
based on the current state (mode) of the ISS.  For 
instance, when the ISS mode transitions from �Standard� 
to �Proximity Operations� in preparation for a planned 
docking event, certain nuisance alarms are generated that 
can be safely filtered from the alarm stream.  An 
operational benefit derived from this function is that 
these nuisance alarms don�t have to manually suppressed 
(and then reactivated) each time one of these extraneous 
alarm-producing events occur.  This manual 
deactivation/reactivation of alarms is a potential safety 
risk that we aim to mitigate with the ANN alarm filter. 
 
A Bayesian Network is a directed acyclic graph8 where 
the nodes represent random variables and the arcs 
represent the probabilistic relationships between them.  
The parents of a node X are those variables that are 
judged to be direct causes of X or to have direct influence 
on X [15].  A conditional probability is specified for each 
node (variable) and the graph can be considered as 
representing the joint probability distribution for all the 
variables.  Sterritt et.al. have shown that a Bayesian 
Belief Network can be effectively used as part of an 
intelligent fault management system for 
telecommunications networks and the ADS BN alarm 
correlator DCA is largely based on the work presented in 
that paper [16].  
  
The Java Neural Network Simulator (JavaNNS910) is the 
kernel of the ACW filtering function and JavaBayes11 

                                                        
8 A directed graph where no path starts and ends at the same vertex. 
9 I. Fischer, F. Hennecke, C. Bannes, A.Zell: Java Neural Network 
Simulator User Manual, Version 1.1, University of Tubingen 

provides the core inference engine for the alarm 
correlation function. 
 

 
Figure 3: ACW DCA architecture 

 
We integrate the ACW DCA into the ADS using the 
Dynamic Weaver Framework. The ACW filtering 
function and the Bayesian Network alarm correlator were 
designed with minimal security and logging aspects, both 
of which are important concerns for a system targeted for 
flight qualification such as the ADS.  Using the Dynamic 
Weaver Framework, previously flight-qualified cross-
cutting concerns such as logging and security can be 
woven into the ACW DCA at runtime thereby 
eliminating the need to re-qualify these aspects resulting 
in lower flight qualification costs.  As requirements for 
logging and security inevitably evolve, these cross-
cutting concerns can be handled separately from the core 
functions of the ACW DCA. 
 

A Fuzzy Cognitive Map Toolkit for Decision Support 
 
In addition to the ACW DCA, the current ADS 
architecture includes a Fuzzy Cognitive Map (FCM) 
Toolkit that can be used for modeling complex, 
dynamical systems.  
 
A FCM [8, 9] is a fuzzy, signed directed graph with 
feedback where the nodes represent concepts and a 
directed edge eij measures how much concept Ci causes 
Cj.  A time varying concept Ci(t) measures the degree of 
occurrence of some event, such as the degree to which a 
component has failed or the �strength� of subsystem 
health, and can take on values in the fuzzy interval [0, 1]. 
 The edges eij take on values in the fuzzy interval [-1, 1] 
where eij = 0 indicates no causality from Ci to Cj, eij > 0 

                                                                                          
10 JavaNNS is Copyright (c) 1996-2001 JavaNSS Group, Wilhelm-
Schickard-Institute for Computer Science (WSI), University of Tubingen, 
Sand 1, 72076 Tubingen, Germany. 
11 JavaBayes is distributed under the GNU General Public License. 
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indicates causal correlation in the same direction (Cj 
increases as Ci increases or Cj decreases as Ci decreases) 
and eij < 0 indicates negative causal correlation (Cj 
decreases as Ci increases or Cj increases as Ci decreases). 
Operations on the graph can be performed using matrix-
vector operations.  
 
Fuzzy Cognitive Maps differ from probabilistic decision 
support systems such as Bayesian Belief Networks.  In a 
probabilistic context, when a random event occurs (such 
as the event of �heads� when a coin is tossed), the event 
occurs completely, i.e. the result of the experiment is 
either entirely heads or entirely tails.  Comparatively, 
events in a FCM occur deterministically but to varying 
degrees, such as �light rain� or �bright sunshine�.  If a 
fuzzy event is non-deterministic, we can integrate the two 
approaches to create a compound statement describing 
the probability of a fuzzy event, such as �a 20 percent 
chance of light rain�. 
 
A FCM is usually constructed by a knowledge engineer 
who acquires domain knowledge from systems experts 
and uses that knowledge to define the concepts, causal 
directions and fuzzy values of the nodes and edges of the 
graph.  As an example, consider the High Level ISS 
System Health Monitor DCA shown below implemented 
as a FCM representing the causal relations of the fuzzy 
concepts of Command and Data Handling (C&DH) 
Subsystem health (C1), Electrical Power Subsystem 
(EPS) health (C2), Thermal Control Subsystem (TCS) 
health (C3), Channel 2B battery low (C4) and Low 
Temperature Loop (LTL) heat exchanger can�t reject 
heat (C5): 
 

 
 

Figure 4: A High-level ISS Systems Health Monitor DCA 
implemented as a Fuzzy Cognitive Map 

 
Subsytem experts have different opinions regarding the 
degree to which the health of one subsystem affects the 
health of others.  The knowledge engineer can conduct 
multiple interviews with subsystem experts and combine 

each of the resulting FCMs to construct a new FCM that 
cumulatively embodies the knowledge of each of the 
experts.  A weighting function can be used to give more 
weight to a FCM constructed from an interview with a 
more experienced systems engineer and a lesser weight to 
one constructed on advice from a less experienced 
systems engineer. The resulting FCM is  a linear 
combination of the separate FCMs: 
 

F = ∑ wiFi 

 
Equation 1: FCM combination 

 
When the FCMs are combined, a threshold function is 
used to map the connection values to the interval [-1, 1] 
and the concept values to the interval [0, 1].  The 
example FCM can be represented as a concept vector: 
 

Ct(0) = [1.0, 1.0, 1.0, 1.0, 0.1] 
 

Figure 5: Initial FCM concept vector 
 
and a connection (edge) matrix E: 
 

 
 

Figure 6: FCM connection matrix for the FCM in Figure 
4 

 
The entries in the concept vector C(0) are initial 
estimates of the concept values given the conditions that 
the LTL Heat Exchanger has lost 10% of its heat 
rejection capacity and the Channel 2B battery is 
completely discharged.  The entries in the connection 
matrix E are the result of applying Equation 1 to a series 
of connection matrices derived from interviews with 
multiple subsystem experts.   
 
A FCM is a dynamical system that can simulate the 
behavior of the process being modeled [14].  Successive 
matrix-vector multiplications are performed with the 
output of one operation being used as the input to the 
next.  The FCM simulation will either diverge or 
converge to a fixed point (a single vector) or limit cycle 
(repeating pattern of vectors).  While holding the 
connection values fixed and �clamping� (firing) the C4 
and C5 concepts to simulate the LTL Heat Exchanger 
and Channel 2B battery failure modes, the FCM 
converges to a new set of concept values: 
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C(t) = [0.83, 0.80, 0.78, 0.73, 0.73] 
 

Figure 7: FCM concept vector after iteration 
 
These new equilibrium values for concepts C1, C2 and 
C3 are interpreted as follows: given the causal relations 
represented by the connection matrix and the initial 
estimates of subsystem health, the computed health 
measures for the C&DH, EPS and TCS subsystems are 
83%, 80% and 78%, respectively, when failure 
conditions C4 and C5 occur simultaneously.  In another 
simulation, firing C5 alone yields: 
 

C(t) = [0.84, 0.84, 0.79, 0.0, 0.73] 
 

Figure 8: FCM concept vector after fault condition C4 is 
removed 

 
showing that the removal of fault condition C4 increases 
C&DH health by one percent, EPS health by four percent 
and TCS health by one percent.  Removing fault 
condition C5 yields similar results. 
 
The FCM Toolkit can be used to build more complex 
models than the previous example and has a Differential 
Hebbian Learning (DHL) function that can imply a 
connection matrix from a time series of concept 
observations.  When the number of concepts being 
modeled becomes large, the DHL function relieves the 
user of having to construct a graphical FCM by hand and 
simply uses recorded observations of each concept 
individually, �learns� the causal strengths according to 
changes in causation over time and automatically 
produces a connection matrix that can be used as a model 
for the complex system. 
 

The ACW DCA, FCM Toolkit and the Dynamic Weaver 
Framework 
 
The kernel of the ACW artificial neural network (ANN) 
filtering function, the Bayesian network (BN) core 
inference engine of the alarm correlation function and 
the computational engine of the FCM Toolkit are core 
functional components of the ISS ADS.  The ANN 
filtering function receives input vectors of alarms from 
the Diagnostic Data Server (DDS) and the BN 
correlation function receives its input vectors from the 
ANN filtering function.  The BN then publishes its result 
set back to DDS so that other ADS DCAs can subscribe 
to the results of the belief network inference.  Similarly, 
the FCM Toolkit core computational engine produces 
result vectors from ad-hoc simulations that may be of 
value to other DCAs in the ADS ecosystem and data 
products of other DCAs can provide useful knowledge for 
a given FCM model.  A security aspect associated with 
each core functional component ensures that input data is 

coming from a trusted source and a logging aspect 
supports transparency so that the end user can see how a 
DCA has come about its results. 
 

 
Figure 9: DCA Crosscutting concerns (non-Aspect-

Oriented view) 
 
From the above figure, it�s clear that the logging and 
security aspects of the DCAs are scattered throughout the 
core functional components of the ADS.  The  functional 
requirements of these crosscutting concerns are likely to 
evolve over time, both during the development phase and 
later when the ADS has been flight qualified and 
deployed on-orbit.  Once a software system has been 
deployed on orbit, changes to the running system are 
difficult and expensive.  Using the Dynamic Weaver 
Framework (DWF) we aim to minimize the impact (cost) 
that a security or logging requirements change will have 
on the deployed system by achieving a separation 
between the crosscutting concerns and the core 
functionality of a DCA. This will allow us to make the 
code base that is subject to change (and perhaps be re-
qualified) as small as possible. Furthermore, using the 
DWF, the system will be able to adapt to changes 
dynamically at runtime, eliminating the need to 
shutdown and/or recompile the operational system to 
accommodate new logging or security requirements. 
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Figure 10: Aspect-Oriented view of the ACW and FCM 

DCAs 
 
In the DWF, the AspectWeaver class weaves classes and 
their perspective aspects, such as logging and security, at 
runtime.  In the case of the security aspect, the 
AspectWeaver intercepts the input vector to the core 
functional component and redirects it to the 
AspectRepository.  The AspectRepository stores 
information about the logging and security aspects and 
the order in which they have to be executed.  The DWF 
provides a loose coupling between the core functional 
components and the aspects, because the components and 
the aspects do not have direct references between them.  
All communication between the core functional 
components and the aspects of the system is 
accomplished through the AspectWeaver class. 
 
The AspectWeaver is a dynamic proxy that directly 
interacts with the clients.  In the security aspect, the 
clients are the methods of the core functional components 
that get input vectors from their buffers.  In the logging 
aspect, the clients are the methods of the core functional 
components that write out log messages.  Whenever a 
client calls a logging or security method, the 
AspectWeaver executes the corresponding invoke() 
method in the AspectWeaver class.  The invoke() method 
then executes the AspectRepository�s beforeAdvice() 
method.  If the call is successful, the actual operation that 
is a logging or security method will be executed.  When 
the method completes, the AspectWeaver will invoke the 
afterAdvice() method in the AspectRepository. 
 

 
 

Figure 11: ACW and FCM DCAs in the Dynamic 
Weaver Framework 

 
By using the Dynamic Weaver Framework to integrate 
the ACW and FCM DCAs into the ADS environment, we 
enhance the adaptability of the system and simplify 
integration of reusable aspects such as logging and 
security.  These benefits provided by the DWF will lessen 
the impact and costs associated with implementing 
unforeseeable changes to the theses important 
crosscutting concerns during the design/build/test and 
sustaining engineering phases of the software life cycle.  
The trade-off is a slight performance degradation due to 
the fact that calls to aspect functions require the 
additional overhead of making calls through the 
AspectWeaver rather than directly invoking the aspect 
function themselves. 
 
We�ve shown how using the DWF can simplify (and 
hence lower the cost) of integrating a DCA into the ADS 
architecture at the cost of a slight performance trade-off, 
but what happens when disjoint DCAs want to share 
knowledge about their particular domain? The 
Framework doesn�t address the semantics of knowledge 
sharing and reuse.  In the next section, we introduce a 
basic ontology that will address these issues within the 
ADS architecture. 
 

4. SHARING KNOWLEDGE IN THE ADS 
 
Within the ADS, diagnostic client applications produce 
data products that are useful to other client applications. 
For instance, the FCM DCA produces an ephemeral 
concept vector representing the current state of certain 
components within a given subsystem and the ACW 
ANN Alarm Filter can use that subsystem state 
information to augment its knowledge of the system 
(included in the ISS state vector) in order to more 
accurately filter extraneous alarms.  If the ANN Alarm 
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Filter knows that pertinent state information is available 
from an agent within the ADS architecture, it doesn�t 
have to go looking for it elsewhere. The BN Alarm 
Correlator produces a list of root cause candidates for a 
given subsystem fault that can be used by another DCA 
concerned with that particular subsystem, e.g. an ad-hoc 
FCM constructed to analyze a particular C&DH problem. 
 While it is clear that the overall effectiveness of the ADS 
can be enhanced by the sharing of certain data products 
between DCAs, it is unclear how that knowledge should 
be represented and shared within the ADS architecture. 
Through what mechanism can agents publish their data 
products and subscribe to the pertinent (and perhaps 
ephemeral) data products of other agents, dynamically? 
 
An ontology defines the vocabulary with which queries 
and assertions are exchanged among agents (DCAs) [10]. 
In this section we present a basic ADS ontology that 
describes ontological commitments enabling DCAs to 
share data products and gain knowledge about the 
environment in which they exist. The presented ontology 
is basic because it will evolve over time as the concept of 
ADS expands. 
 

A Basic Ontology for the ADS 

We could represent shared knowledge within the ADS 
using a simple lookup table, but an ontology provides a 
much richer set of constructs through which we can 
formally describe the semantics of classes and properties 
 of ADS resources.  Furthermore, the ADS ontology can 
be updated dynamically by the Diagnostic Data Server to 
reflect the data products currently available at a given 
point in time.  
 
We use the OWL Web Ontology Language as the basis 
for our ADS ontology since it is designed for use by 
applications that need to process the content of 
information rather than presenting information to 
humans. OWL builds on web-based information 
representation languages such as XML, Resource 
Description Framework (RDF) and RDF Schema (RDF-
S) and goes beyond these languages in its ability to 
represent machine-interpretable content on the Web12 
[11]. 
 
1 <?xml version="1.0" encoding="UTF-8" ?> 
2 <rdf:RDF 
3 xmlns:rdf=http://www.w3.org/1999/02/22rdf-syntax-
ns# 
4 xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema# 
5 xmlns:dc=http://purl.org/dc/elements/1.0/ 
6 xmlns:owl=http://www.w3.org/2002/07/owl#  

                                                        
12 ADS ontology publication is limited to a secured intranet and is not 
generally available on the Web. 

7 xmlns=http://www.w3.org/2002/07/owl#> 
8 <Ontology rdf:about=��>  
9 <dc:title>ADS Ontology</dc:title> 
10 <dc:creator>IMT Lab</dc:creator> 
11 <dc:subject>OWL; ADS;</dc:subject> 
12 <dc:publisher>Daryl Fletcher</dc:publisher> 
13 <dc:date>2003-09-02</dc:date> 
14 <dc:format>text/xml</dc:format> 
15 <dc:language>en</dc:language>  
16 </Ontology> 
 
17 <owl:Class rdf:ID="ADS"> 
18 <label>Advanced Diagnostic System</label> 
19 </owl:Class> 
 
20 <owl:Class rdf:ID="DCA"> 
21 <label>Diagnostic Client Application</label> 
22 </owl:Class> 
 
23 <owl:ObjectProperty rdf:ID="Description"> 
24 <rdfs:domain><owl:Class> 
25 <owl:unionOf rdf:parseType="Collection"> 
26 <owl:Class rdf:about="#ADS"/> 
27 <owl:Class rdf:about="#DCA"/> 
28 </owl:unionOf> 
29 </owl:Class></rdfs:domain> 
30 </owl:ObjectProperty> 
31 <owl:ObjectProperty rdf:ID="Owner"> 
32 <rdfs:domain><owl:Class>   
33 <owl:unionOf rdf:parseType="Collection"> 
34 <owl:Class rdf:about="#ADS"/> 
35 <owl:Class rdf:about="#DCA"/> 
36 </owl:unionOf> 
37 </owl:Class></rdfs:domain 
38 </owl:ObjectProperty> 
39 <owl:ObjectProperty rdf:ID="Contact"> 
40 <rdfs:domain><owl:Class> 
41 <owl:unionOf rdf:parseType="Collection"> 
42 <owl:Class rdf:about="#ADS"/> 
43 <owl:Class rdf:about="#DCA"/> 
44 </owl:unionOf> 
45 </owl:Class></rdfs:domain> 
46 </owl:ObjectProperty> 
 
47 <owl:Class rdf:ID="ISS_ADS"> 
48 <label>ISS Advanced Diagnostic System</label> 
49 <owl:subClassOf rdf:resource="#ADS" /> 
50 <owl:unionOf rdf:parseType=�Collection�> 
51 <owl:Class rdf:about=�#ISS_CDH_DCA�/> 
52 <owl:Class rdf:about=�#ISS_ECW_DCA�/> 
53 </owl:unionOf> 
54 </owl:Class> 
 
55 <owl:Class rdf:ID="ISS_DCA"> 
56 <label>ISS Diagnostic Client Application</label> 
57 <owl:subClassOf rdf:resource="#DCA" /> 
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58 </owl:Class> 
 
59 <ISS_ADS owl:Class rdf:ID="imt_iss_ads"> 
60 <label>IMT Lab ISS ADS</label> 
61 <Description> 

An Advanced Diagnostic System for the 
International Space Station under development in 
the Intelligent Mobile Technologies Lab at NASA-
Ames Research Center 

62 </Description> 
63 <Owner>Dan Duncavage</Owner> 
64 <Contact>daniel.p.duncavage@nasa.gov</Contact> 
65 </ISS_ADS> 
 
66 <owl:Class rdf:ID="ISS_FCM_DCA"> 
67 <owl:subClassOf rdf:resource="#ISS_DCA" /> 
68 </owl:Class> 
 
69 <ISS_FCM_DCA rdf:ID="fcm_toolkit_dca"> 
70 <Description> 

A core computational engine and set of graphical 
tools for modeling complex systems using Fuzzy 
Cognitive Maps 

71 </Description> 
72 <Owner>Daryl Fletcher</Owner> 
73 <Contact>dpfletcher@mail.arc.nasa.gov</Contact> 
74 <Publishes> 
75 <ConceptVector> 
76 <ReferenceInformation> 
77 <document>FCM Toolkit 
User�sManual</document> 
78 </ReferenceInformation> 
79 <rdfs:comment> 

A concept vector consists of a time stamp followed 
by a series of comma separated element state 
estimations, terminated by a newline. 

80 </rdfs:comment> 
81 <dataProductFormat> 
82 <timestamp rdf:datatype="&xsd;dateTime" \> 
83 <cdh_health rdf:datatype="&xsd;float" \> 
84 <eps_health rdf:datatype="&xsd;float" \> 
85 <tcs_health rdf:datatype="&xsd;float" \> 
86 </dataProductFormat> 
87 <howToSubscribe> 
88 <subscriberInstructions> 

Send registered user name and password to the 
following host and port along with subscribing 
application�s IP address and port. 

89 </subscriberInstructions> 
90 <Host>xxx.xxx.xxx.xxx</Host> 
91 <Port>18333</Port> 
92 </howToSubscribe> 
93 </ConceptVector> 
94 </Publishes> 
95 </ISS_FCM_DCA> 
 

96 <owl:Class rdf:ID="ISS_ECW_DCA"> 
97 <owl:subClassOf rdf:resource="#DCA" /> 
98 </owl:Class> 
 
99 <ISS_ECW_DCA rdf:ID="acw_dca"> 
100 <Description> 
101 An Advanced Caution and Warning application that 
filters alarms using an Artificial Neural Network and 
performs fault correlation using a Bayesian Network. 
102 </Description> 
103 <Owner>Daryl Fletcher</Owner> 
104 <Contact>dpfletcher@mail.arc.nasa.gov</Contact> 
105 <Publishes> 
106 <rdfs:comment> 
107 All time stamps in published products are in ISO 
8601 Format: yyyy-mm-dd hh:mm:ss.xxx. 
108 </rdfs:comment> 
109 <FilteredAlarms> 
110 <ReferenceInformation> 
111 <url>http://www.jsc.nasa.gov/c&w/index.html 
112 </url> 
114 <document>ISS Familiarization</document> 
115 <document>C&DH Training Manual</document> 
116 </ReferenceInformation> 
117 <rdfs:comment> 
118 Fields within alarm event blocks are separated by 
commas. Event blocks are delimited by newlines. 
119 </rdfs:comment> 
120 <dataProductFormat> 
121 <eventptr rdf:datatype=�&xsd;int� \> 
122 <logtime rdf:datatype="&xsd;dateTime" \> 
123 <dayofyear rdf:datatype=�&xsd;int� \> 
124 <event rdf:datatype=�&xsd;int� \> 
125 <alarmtype rdf:datatype="&xsd;string" \> 
126 <ackstate rdf:datatype="&xsd;string" \> 
127 <eventstate rdf:datatype="&xsd;string" \> 
128 <status rdf:datatype=�&xsd;int� \> 
129 <annstate rdf:datatype="&xsd;string" \> 
130 </dataProductFormat> 
131 <howToSubscribe> 
132 <subscriberInstructions> 
133 Send registered user name and password to the 
following host and port along with subscribing 
application�s IP address and port. 
134 </subscriberInstructions> 
135 <Host>xxx.xxx.xxx.xxx</Host> 
136 <Port>17593</Port> 
137 </howToSubscribe> 
138 </FilteredAlarms> 
139 <RootCauseAnalysis> 
140 <ReferenceInformation></ReferenceInformation> 
141 <rdfs:comment> 
142 A root cause analysis consists of a time stamp 
followed by a statement of root cause candidates 
terminated by a newline. 
143 </rdfs:comment> 



 13

144 <dataProductFormat> 
145 <timeStamp rdf:datatype="&xsd;dateTime"> 
146 <rootCauseCandidates rdf:datatype="&xsd;string"> 
147 </dataProductFormat> 
148 <howToSubscribe> 
149 <subscriberInstructions> 
150 Send registered user name and password to the 
following host and port along with subscribing 
application�s IP address and port. 
151 </subscriberInstructions> 
152 <Host>xxx.xxx.xxx.xxx</Host> 
153 <Port>17594</Port> 
154 </howToSubscribe> 
155 </RootCauseAnalysis> 
156 </ISS_ECW_DCA> 
157 </rdf:RDF> 
 

Figure 12: The ADS ontology 
 
Lines 1-16�These lines provide the namespace 
references and form the header of the ontology.   
 
Lines 17-19�The ontology specifies an ADS as a base 
class that can be subclassed to represent different types of 
ADSs, e.g. an International Space Station ADS or an 
Orbital Space Plane ADS.  
 
Lines 20-22�As with the ADS, the ontology specifies a 
DCA as a base class that can be subclassed to represent 
different types of DCAs, e.g. an International Space 
Station DCA or an Orbital Space Plane DCA. 
 
Lines 23-46�These lines assert that the ADS and DCA 
classes have properties associated with them named 
Description, Owner and Contact. 
 
Lines 47-54�Define the class ISS_ADS, a subclass of 
ADS specific to the International Space Station.  The 
class is composed of the union of two DCA subclasses, 
namely an ISS_CDH_DCA and an ISS_ECW_DCA.  
Each of these DCA subclasses can have multiple 
instances representing distinct individuals, e.g., there can 
be several different ISS_CDH_DCAs within the 
ISS_ADS, each having its own identity. 
 
Lines 55-58�Define the class ISS_DCA, a subclass of 
DCA specific to the International Space Station.  To 
easily extend the ADS ontology to another domain such 
as the Orbital Space Plane, we would simply define a 
class OSP_DCA as another subclass of DCA. 
 
Lines 58-65�Here we introduce an individual instance of 
an ISS_ADS named imt_iss_ads.  It has a Description, 
an Owner and Contact information.  We could have 
another instance of an ISS_ADS developed by another 
group, say group ABC, and name it abc_iss_ads.  Then, 

using the vocabulary established in the ADS ontology, 
knowledge could be shared between multiple ADSs, 
similar to the manner in which knowledge is shared 
among DCAs. 
 
Lines 66-68�Define the class ISS_FCM_DCA, a 
subclass of ISS_DCA.  
 
Lines 69-95� Here we introduce an individual instance 
of an ISS_FCM_DCA named fcm_toolkit_dca.  It has a 
Description, an Owner and Contact information, as do 
all DCAs and ADSs.  Note the <Publishes> section 
starting on line 74. Enclosed in this section is specific 
information about how this DCA goes about sharing its 
knowledge with the world around it.  It has one data 
product that it wishes to share; a <ConceptVector>.  
There is a document included in the 
<ReferenceInformation> section that this DCA believes 
is relevant to the understanding of its <ConceptVector> 
data product. Lines 79-80 contain a comment that is a 
human-readable description of the <ConceptVector> 
format, while the <dataProductFormat> section in lines 
81-86 contains a machine-readable description of the 
<ConceptVector> format.  The <ConceptVector> 
consists of a time stamp and values for the concepts 
C&DH health, EPS health and TCS health.  The 
<howToSubscribe> section in lines 87-92 provides 
information for agents that wish to subscribe to this 
particular data product13.  
 
Lines 96-98�Define the class ISS_ECW_DCA, a 
subclass of ISS_DCA specific to the Emergency, Caution 
and Warning (ECW) System. 
 
Lines 99-156�Here we introduce an individual instance 
of an ISS_ECW_DCA named acw_dca. This is the 
Advanced Caution and Warning DCA described in this 
document.  It has a Description, an Owner and Contact 
information and publishes two data products: 
<FilteredAlarms> and <RootCauseAnalysis>.  Note that 
the overall ontological structure of acw_dca is the same 
as that of fcm_toolkit_dca.  The acw_dca provides links 
to information it believes is important for understanding 
its data products, as well as providing information for 
potential subscribers.  The details of this DCAs data 
product descriptions are essentially the same as described 
for the fcm_toolkit_dca and are not repeated here. 
 
Line 157�Closes the ADS ontology. 
 

                                                        
13 In the ADS architecture, the <Host> and <Port> used for DCA data 
product subscription information belong to the Diagnostic Data Server. A 
DCA publishes only to the DDS; the DDS then publishes to all of the 
subscribers, relieving a DCA of the burden of keeping track of all its 
subscribers. 
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In the ontology presented above, the ADS is a union of 
classes that can be easily extended to include multiple 
ADSs and even form a hierarchy of ADSs, much like the 
�manager-of-managers� hierarchical structure typically 
found in large-scale Network Management Systems [12] 
where one ADS could become a DCA of another ADS. 
The hierarchy of ADSs can evolve along with the 
evolution of the complex system to which the ADS is 
applied; smaller ADSs can be developed in parallel with 
the complex system and then integrated to form a 
coherent whole while maintaining a consistent 
representation of ADS concepts.  Using the ADS 
ontology, DCAs within an ADS can dynamically 
discover and subscribe to ADS resources using standard, 
web-based technologies. Our ADS ontology is dynamic, 
scalable, extensible, expressive in its conceptualization of 
the ADS universe, is easily accessed by distributed agents 
and is based on emerging standards easily adopted by 
DCA developers.  
 

5. CONCLUSION 
This paper presents some of the challenges associated 
with bringing software projects from the research world 
into an operational environment.  While the core 
functional components of research-oriented software 
applications can have great utility in an operational 
setting, these applications often lack aspects important in 
an operational environment such as logging and security. 
 Furthermore, these stand-alone applications, sometimes 
developed in isolation from one another, can produce 
data products useful to other applications in a software 
ecosystem.  
 
We present the Dynamic Weaver Framework, an Aspect-
Oriented framework for dynamically weaving aspects 
such as logging and security into disparate applications 
at run-time.  Aspect-Oriented methodology isolates code 
that would otherwise be tangled throughout the software 
system and separates utility-type aspects from the core 
functional components, allowing research application 
developers to focus resources on the research-oriented 
components of the system.  The Framework takes 
advantage of the benefits of Aspect-Oriented 
Programming and uses a dynamic proxy for weaving 
aspects such as logging and security into the software 
system at run-time, providing the systems integrator with 
an economical method for bringing lower Technical 
Readiness Level (TRL) research applications into 
operational environments.  
 
The Dynamic Weaver Framework is applied to the 
Advanced Diagnostic System, under development at 
Ames Research Center, which is composed of a set of 
Diagnostic Client Applications developed from multiple 
funding sources.  While DCAs (agents) have utility as 

stand-alone applications, they generate knowledge about 
the system that can be shared throughout the ADS, 
thereby increasing the overall effectiveness of the ADS as 
a diagnostic system.  To facilitate knowledge sharing and 
reuse in the ADS, we present a basic ontology that 
defines the vocabulary by which agents can exchange 
knowledge within the ADS universe. 
 
Using the Dynamic Weaver Framework to support code 
reuse and simplify reconfiguration and the basic ADS 
ontology to enhance the effectiveness of the ADS enables 
the systems integrator to bring a better software system 
into the operational environment at a lower cost. 
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